Minimising Mcmc Variance via Diffusion Limits, with an Application to Simulated Tempering

نویسندگان

  • GARETH O. ROBERTS
  • JEFFREY S. ROSENTHAL
  • G. O. ROBERTS
  • J. S. ROSENTHAL
چکیده

We derive new results comparing the asymptotic variance of diffusions by writing them as appropriate limits of discrete-time birth–death chains which themselves satisfy Peskun orderings. We then apply our results to simulated tempering algorithms to establish which choice of inverse temperatures minimises the asymptotic variance of all functionals and thus leads to the most efficient MCMC algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

7 Importance Tempering

Simulated tempering (ST) is an established Markov Chain Monte Carlo (MCMC) methodology for sampling from a multimodal density π(θ). The technique involves introducing an auxiliary variable k taking values in a finite subset of [0, 1] and indexing a set of tempered distributions, say π k (θ) ∝ π(θ) k. Small values of k encourage better mixing, but samples from π are only obtained when the joint ...

متن کامل

A ug 2 00 7 Importance Tempering

Simulated tempering (ST) is an established Markov Chain Monte Carlo (MCMC) methodology for sampling from a multimodal density π(θ). The technique involves introducing an auxiliary variable k taking values in a finite subset of [0, 1] and indexing a set of tempered distributions, say π k (θ) ∝ π(θ) k. Small values of k encourage better mixing, but samples from π are only obtained when the joint ...

متن کامل

Importance tempering

Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ). Typically, ST involves introducing an auxiliary variable k taking values in a finite subset of [0, 1] and indexing a set of tempered distributions, say πk(θ) ∝ π(θ) k. In this case, small values of k encourage better mixing, but samples from π are only obtained when the...

متن کامل

N ov 2 00 8 Importance Tempering

Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ). Typically, ST involves introducing an auxiliary variable k taking values in a finite subset of [0, 1] and indexing a set of tempered distributions, say π k (θ) ∝ π(θ) k. In this case, small values of k encourage better mixing, but samples from π are only obtained when t...

متن کامل

Resolution of the MEG inverse problem by Markov Chain Monte Carlo methods : Algorithm comparison and 3-dimensional visualization tools

Markov Chain Monte Carlo methods are statistical tools that have been recently proposed for the resolution of the MEG inverse problem [1]. Their main advantages are easy incorporation of a priori knowledge, and an adequate response to the ambiguity of the ill-posed MEG inverse problem. However, since simpler MCMC schemes might have difficulties in escaping from local modes, adequate research is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012